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course book Animation Maths (Ivo De Pauw, Bieke Masselis), Lan-

nooCampus (2016), ISBN 978-94014-32047, which will be used in the
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Chapter 7
Lighting

In this chapter we discuss the physical and mathematical principles that are
the basics for lighting calculations in a 3D game. Most game engines use
a rasterizer for 3D rendering and this means that an approximate model
of real life lighting is used, or that realism is thrown out of the window
altogether for the creation of a ‘cartoony’ style of rendering.

One of the weaknesses of the rasterizer is that shadows and reflections are
somewhat harder to accomplish. The main reason is that a rasterizer works
on individual objects on the scene, and the environment of the object can
only be communicated via special means (e.g. environment textures, shadow
maps, ...).
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We conclude the chapter with a discussion about the rendering pipeline in a
typical 3D or game application. A modern GPU is very flexible in terms of
programming but some basic building blocks are always present.

7.1 Color

Lighting mostly takes place in RGB space or SRGB space. This color space
is not necessarily the best color space for lighting calculations. There are
other color spaces where a brighter color can be calculate more correctly.
However, in a RGB color space we just multiply all the channels with the
same parameter and hope for the best:

1 = (124 12 64)
Cy = 2-cl
¢y = (248 24 128)

Color ¢y represents the following color: -, and after multiplying ¢; with
2 we get color ¢y :

This principle is used in a lot of renderers to illuminate (or brighten) the
diffuse color of an object. However, in a lot of cases this multiplication also
changes the tint of the color. A possible solution would be to use an alternate
color space that supports brightness, but this would require major changes
in the art production toolchain, so it is probably not very realistic to hope
for this to happen.

7.2 Normal calculation

The concept of a normal is very important when calculating the lighting on
a 3D mesh. The normal is a vector that is perpendicular to a triangle that
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is part of the mesh. For lighting calculations the normal must have length
one.

We will start with a simple example. The following simple mesh is a single
quad, which contains two triangles. Triangle 1 is defined by the points P,
P, and Pj. Triangle 2 is defined by the points P, P; and P;.

X

To calculate the normal for triangle 1 (P, P, and P3) we need to calculate
two vectors in this triangle:

0 =P —P
Uy =Py — P,

The normal is now simply the normalized cross product of these two vectors:

The result of the cross product is a vector that is perpendicular to the first
triangle:
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—

n] = U] X Uy

We can now perform the same operation for the second triangle. However,
in a 3d mesh we typically want the normal vectors to point in the same
direction. In other words, for a closed object, all the normal vectors should
point outwards for example. For the second triangle the calculate becomes:

U_é:P3—P1
vy =P, — P

The normal is now simply the cross product of these two vectors:

And we can draw n3 on the second triangle:

LIGHTING, by courtesy of Koen.Samyn@howest.be



CHAPTER 7. LIGHTING 143

7.3 Diffuse lighting

Diffuse lighting depends only on the position or direction of the light source
and the surface normal. To illustrate this concept, consider the following
situations:

X

The normal vectors ( 77, n3, n3 and ny) are in this case the same vector:
(00 1). The light vectors ( Iy, Iy, I3 and l4) are the vectors that are directed
from the plane towards the light source.

The angle between these two vectors determine how much diffuse light will
hit the surface. It is easy to see that if the angle between the two vectors is
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small or zero, the intensity on the surface will be maximal (situation on
the right). If the angle between the two vectors is large (for example 90°),
then the surface intensity will be minimal.

The formula that we can use to calculate the diffuse intensity on the surface
is the dot product:

Iy=1-7

The light vector [ depends on the type of light. For a directional light the
light vector will be independent of the position of the pixel that we want to
calculate. For a pointlight or spotlight the light vector will be the difference
between the light position in the world and the pixel position in the world:

l": Lw - Pw

||Lw — B, wH

When calculating vectors for lighting calculations it is always important to
use normalized vectors. It is therefore necessary to divide the vector by its
length.

7.4 Specular lighting

Specular lighting can be seen as the reflection of the light source by the
material. A typical reflection will mirror the light ray based on the normal
of the surface. In other words, the incoming angle of the light ; will be equal
to the outgoing angle 6,,.
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Just like the light vector calculation for diffuse we will calculate the light
vector as follows:

l"_ Lw - Pw

HLw — P, wH

To calculate the outgoing vector L starting from the incoming angle L and
the normal 77 we will use the dot product to calculate the projection of /; on

—

n:

If | ||| equals one and ||/;|| equals one, then the length d is the dot product
of the vectors 77 and [;. We can now use this length and the normal vector 7
to create a vector that is mirrored by the horizontal plane:
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if we calculate the result of I; — dii we reach the horizontal plane. To mirror
the vector [; we need to apply the same vector again :

It is easy to show that 6; is equal to 6,, because these two angles are in
congruent triangles. As you can see in the following figure the height of the
triangles Ay and A, is the same and they share an edge:
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Ly

Finally we can calculate the reflected vector by negating the vector l;.
Negating the coordinates of a vector effectively rotates the vector over 180°.

Ly,

This reflected vector can now be used to calculate the specular intensity.
However, there is also a technique which is called the half vector technique
that can also be used to calculate the specular intensity.

7.4.1 Specular intensity

The specular intensity is dependent on the position of the viewer. This means
that we need to define a view vector ¢ that is normalized and again pointing
from the pixel we want to calculate (p,,) towards the position of the viewer
or eye (E,).
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A first approach for the specular component is again the dot product but
now with the vectors ¢ and [,. The specular intensity g is then calculated
as :

—

Is=7v-1,

The dot product is related to the cosine of the angle between the vectors,
thus the intensity in terms of the angle a can be presented as:

gl
1) - | ]
2 0.5 1
0 | | ]
0 50
(0%

The problem with the dot product is that the area where the intensity is
higher then 80% is quite large. We can visualize this by calculating the angle
« for which the cosine equals 0.8 :
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cos(a) = 0.8
« = arccos(«)
a~37°

This area is represented in the figure by the light green area:

vl
10 | |
205 .
07\ | ]

0 50

0

This means that around the vector [, there is a large area of high intensity
(where the intensity is larger then 0.8), again shown as a light green area in
the following figure:

This large sector of high intensity leads to a result that is overexposed. This
situation can be corrected by raising the specular intensity Is to a power:
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—

[S _ (l . 6>shim'ness
— \lo

If the shininess parameter is assigned the value 10, we get the following
formula for the specular power:

—

Is = (I, - 0)"°

We can again calculate the value for « if we want to know the area where
the intensity is higher then 0.8 or 80

(cos(a))'? = 0.8
cos(a) = V0.8
o = arccos( V0.8)

o~ 12°

If we plot the specular power [ again with the area where the specular power
is larger then 0.8, we see that the are has been significantly reduced:
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If we show this area around the vector lz with the specular power value of
ten, it is also clear to see the area with a large specular intensity is reduced:

Ly,

B, Lo li
Py

The following figure shows the influence on the specular power. On the left,
the specular power is two, the object in the middle has a specular power of
10, and the object on the right has a specular power of 50. As can be seen,
the area with high specularity diminishes when the power increases:

7.4.2 Specular intensity with halfvector

Another technique exists to calculate the specular intensity. With this tech-
nique the vector halfway between the view vector ¥ and the incoming light
vector E is calculated. The specular intensity Ig is then calculated as the dot
product of this new half vector h and the normal 7. The half vector & can
be calculated by adding v and E and normalizing the result:

f+77
116 + 4]

h=

The following figure demonstrates that the sum of ¢ and l; is not always a
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unit vector. It is necessary to normalize this sum vector to ensure that the
vector h has length 1.

Now that the vector h has been calculated, the specular intensity can be
calculated with the formula:

IS — (B' . ﬁ)shim’ness

The shininess parameter provides control over the specular area. A small
value for shininess leads to a large specular area, a large value generates a
small specular area.

7.4.3 Comparison of reflection versus halfvector

On the left hand side the results are shown for the phong shading, on the right
hand side the results for blinn-phong shading with the half vector technique
is shown. The top row has a shininess parameter of 10 and the bottom row
has a shininess of 20.
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We can immediately see tha phong shading results in a smaller highlight.
Because the reflection vector is calculated in the phong shading technique,
the specular highlight is circular. For the blinn-phong shading technique
the highlight is larger in size, and also has an ellipsoid form.

7.5 Cell shading

Cell shading is a technique that is used to create lines (soft or hard) and in
some cases also a separation of colors into a number (typically 2) of tones
(different shades of the same colors). An example with 3 tones and a white
line (for emphasis) is given in the following picture:
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One part of the cell shading implementation determines if a pixel is a part
of the line. If the pixel is on the line the line color will be used.

If the pixel is not on the line portion of the rendering the tone of the pixel
will be determined.

7.5.1 Line determination

If a pixel is on the line part of the rendering, the dot product of the view
vector with the normal of that pixel will be close to zero. The following
figure shows the general concept. The view vector ¢ is oriented towards a
pixel that is to be rendered. Each pixel belongs to a surface that defines a
normal vector n;.

N,

For smooth surfaces the normal vector will be interpolated, which means
that the actual normal is a blend of the normals of the vertices of a surface.
See section 7.2 for detailed information about the calculation of the normal.

We can now

7.6 The render pipeline - Rasterization

To write shaders (programs that calculate lighting effects in games and 3d
applications) it is necessary to understand the render pipeline. The rendering
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